Existance of ordinal ultrafilters and of \mathcal{P} -hierarchy.

Andrzej Starosolski

Institute of Mathematics, Silesian University of Technology

Winter School in abstract Analysis section Set Theory, Hejnice 2011

Ordinal ultrafilters (J. E. Baumgartner 1995) An ultrafilter u is J_{α} -**ultrafilter** if for each function $f : \omega \to \omega_1$ there is $U \in u$ such that $ot(f(U)) < \alpha$. **Proper** J_{α} -**ultrafilters** are such J_{α} -ultrafilters that are not J_{β} -ultrafilters for any $\beta < \alpha$. The class of proper J_{α} ultrafilters we denote by J_{α}^* .

If $(u_n)_{n < \omega}$ is a sequence of filters on ω and v is a filter on ω then the **contour on the sequence** (u_n) with respect to v is:

$$\int_{V} u_n = \bigcup_{V \in V} \bigcap_{n \in V} u_n$$

(Dolecki, Mynard 2002) **Monotone sequential contours** of rank 1 are exactly Frechet filters on infinite subsets of ω ; u is a monotone sequential contours of rank α if $u = \int_{Fr} u_n$, where $(u_n)_{n<\omega}$ is a discrete sequence of monotone sequential contours such that: $r(u_n) \leq r(u_{n+1})$ and $\lim_{n<\omega} (r(u_n) + 1) = \alpha$. If $(u_n)_{n < \omega}$ is a sequence of filters on ω and v is a filter on ω then the **contour on the sequence** (u_n) with respect to v is:

$$\int_{V} u_n = \bigcup_{V \in V} \bigcap_{n \in V} u_n$$

(Dolecki, Mynard 2002) **Monotone sequential contours** of rank 1 are exactly Frechet filters on infinite subsets of ω ; u is a monotone sequential contours of rank α if $u = \int_{Fr} u_n$, where $(u_n)_{n < \omega}$ is a discrete sequence of monotone sequential contours such that: $r(u_n) \leq r(u_{n+1})$ and $\lim_{n < \omega} (r(u_n) + 1) = \alpha$. Define classes \mathcal{P}_{α} of **P-hierarchy** for $\alpha < \omega_1$ as follows: $u \in \mathcal{P}_{\alpha}$ if there is no monotone sequential contour c_{α} of rank α such that $c_{\alpha} \subset u$, and for each $\beta < \alpha$ there exists a monotone sequential contour c_{β} of rank β such that $c_{\beta} \subset u$.

If P-points exist, then for each countable ordinal α the class of proper $J_{\omega^{\alpha+1}}$ -ultrafilters is nonempty.

Theorem

If P-points exist, then for each countable ordinal α the class $\mathcal{P}_{\alpha+1}$ is nonempty.

Theorem

If P-points exist, then $\mathcal{P}_{\alpha+1} \cap J^*_{\omega^{\alpha+1}} \neq \emptyset$ for each countable α .

Theorem ($\mathit{MA}_{\sigma-\mathit{center}}$)

 $\mathcal{P}_{lpha+1}
eq J^*_{\omega^{lpha+1}}$ for $1 < lpha < \omega_1$

・ 一 ・ ・ ・ ・ ・ ・

If P-points exist, then for each countable ordinal α the class of proper $J_{\omega^{\alpha+1}}$ -ultrafilters is nonempty.

Theorem

If P-points exist, then for each countable ordinal α the class $\mathcal{P}_{\alpha+1}$ is nonempty.

Theorem

If P-points exist, then $\mathcal{P}_{\alpha+1} \cap J^*_{\omega^{\alpha+1}} \neq \emptyset$ for each countable α .

Theorem ($MA_{\sigma-center}$)

 $\mathcal{P}_{lpha+1}
eq J^*_{\omega^{lpha+1}}$ for $1 < lpha < \omega_1$

If P-points exist, then for each countable ordinal α the class of proper $J_{\omega^{\alpha+1}}$ -ultrafilters is nonempty.

Theorem

If P-points exist, then for each countable ordinal α the class $\mathcal{P}_{\alpha+1}$ is nonempty.

Theorem

If P-points exist, then $\mathcal{P}_{\alpha+1} \cap J^*_{\omega^{\alpha+1}} \neq \emptyset$ for each countable α .

Theorem $(MA_{\sigma-center})$

$$\mathcal{P}_{lpha+1}
eq J^*_{\omega^{lpha+1}}$$
 for $1 < lpha < \omega_1$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

If P-points exist, then for each countable ordinal α the class of proper $J_{\omega^{\alpha+1}}$ -ultrafilters is nonempty.

Theorem

If P-points exist, then for each countable ordinal α the class $\mathcal{P}_{\alpha+1}$ is nonempty.

Theorem

If P-points exist, then $\mathcal{P}_{\alpha+1} \cap J^*_{\omega^{\alpha+1}} \neq \emptyset$ for each countable α .

Theorem ($MA_{\sigma-center}$)

$$\mathcal{P}_{lpha+1}
eq J^*_{\omega^{lpha+1}} \,$$
 for $1 < lpha < \omega_1$

Let $1 < \alpha < \omega_1$ and assume u is a proper $J_{\omega^{\alpha+2}}$ -ultrafilter. Then there is a P-point ultrafilter v such that $v \leq_{RK} u$.

I heorem

Let $1 < \alpha < \omega_1$ is an ordinal and $u \in \mathcal{P}_{\alpha+1}$. Then there is a *P*-point ultrafilter *v* such that $v \leq_{RK} u$.

Theorem (Laflamme 1996) $({ m MA}_{\sigma-{ m centr}})$

There is proper $J_{\omega^{\omega+1}}$ -ultrafilter all of whose RK-predecessors are proper $J_{\omega^{\omega+1}}$ -ultrafilters.

Let $1 < \alpha < \omega_1$ and assume u is a proper $J_{\omega^{\alpha+2}}$ -ultrafilter. Then there is a P-point ultrafilter v such that $v \leq_{RK} u$.

Theorem

Let $1 < \alpha < \omega_1$ is an ordinal and $u \in \mathcal{P}_{\alpha+1}$. Then there is a *P*-point ultrafilter v such that $v \leq_{RK} u$.

Theorem (Laflamme 1996) $({ m MA}_{\sigma-{ m centr}})$

There is proper $J_{\omega^{\omega+1}}$ -ultrafilter all of whose RK-predecessors are proper $J_{\omega^{\omega+1}}$ -ultrafilters.

Let $1 < \alpha < \omega_1$ and assume u is a proper $J_{\omega^{\alpha+2}}$ -ultrafilter. Then there is a P-point ultrafilter v such that $v \leq_{RK} u$.

Theorem

Let $1 < \alpha < \omega_1$ is an ordinal and $u \in \mathcal{P}_{\alpha+1}$. Then there is a *P*-point ultrafilter v such that $v \leq_{RK} u$.

Theorem (Laflamme 1996) ($MA_{\sigma-centr}$)

There is proper $J_{\omega^{\omega+1}}$ -ultrafilter all of whose RK-predecessors are proper $J_{\omega^{\omega+1}}$ -ultrafilters.

For each countable ordinal α the class $P_{\alpha+\omega}$ is nonempty.

Theorem (CH

For each countable ordinal α the class P_{α} is nonempty.

Theorem

Let α be limit ordinal and let (v_n) be an increasing sequence of monotone sequential contours of rank less then α then $\bigcup_{n<\omega} v_n$ do not contain any monotone sequential contour of rank α .

Theorem (ZFC)

The class of proper $J_{\omega^{\omega}}$ -ultrafilters is empty.

For each countable ordinal α the class $P_{\alpha+\omega}$ is nonempty.

Theorem (CH)

For each countable ordinal α the class P_{α} is nonempty.

Theorem

Let α be limit ordinal and let (v_n) be an increasing sequence of monotone sequential contours of rank less then α then $\bigcup_{n<\omega} v_n$ do not contain any monotone sequential contour of rank α .

Theorem (ZFC)

The class of proper $J_{\omega^{\omega}}$ -ultrafilters is empty.

For each countable ordinal α the class $P_{\alpha+\omega}$ is nonempty.

Theorem (CH)

For each countable ordinal α the class P_{α} is nonempty.

Theorem

Let α be limit ordinal and let (v_n) be an increasing sequence of monotone sequential contours of rank less then α then $\bigcup_{n<\omega} v_n$ do not contain any monotone sequential contour of rank α .

Theorem (ZFC)

The class of proper $J_{\omega^{\omega}}$ -ultrafilters is empty.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

For each countable ordinal α the class $P_{\alpha+\omega}$ is nonempty.

Theorem (CH)

For each countable ordinal α the class P_{α} is nonempty.

Theorem

Let α be limit ordinal and let (v_n) be an increasing sequence of monotone sequential contours of rank less then α then $\bigcup_{n<\omega} v_n$ do not contain any monotone sequential contour of rank α .

Theorem (ZFC)

The class of proper $J_{\omega^{\omega}}$ -ultrafilters is empty.

The **cascade** is a tree V, ordered by " \sqsubseteq ", without infinite branches and with a least element \emptyset_V . A cascade is sequential if The **rank** of $v \in V$ (r(v)) is defined inductively: r(v) = 0 if

The **cascade** is a tree V, ordered by " \sqsubseteq ", without infinite branches and with a least element \emptyset_V . A cascade is **sequential** if for each non-maximal element of V ($v \in V \setminus \max V$) the set v^+ of immediate successors of v is countably infinite. If $v \in V \setminus \max V$, The **rank** of $v \in V$ (r(v)) is defined inductively: r(v) = 0 if

The **cascade** is a tree V, ordered by " \sqsubseteq ", without infinite branches and with a least element \emptyset_V . A cascade is **sequential** if for each non-maximal element of V ($v \in V \setminus \max V$) the set v^+ of immediate successors of v is countably infinite. If $v \in V \setminus \max V$, then the set v^+ may be endowed with an order of the type ω , and then by $(v_n)_{n \in \omega}$ we denote the sequence of elements of v^+ . The **rank** of $v \in V$ (r(v)) is defined inductively: r(v) = 0 if

The **cascade** is a tree V, ordered by " \sqsubseteq ", without infinite branches and with a least element \emptyset_V . A cascade is **sequential** if for each non-maximal element of V ($v \in V \setminus \max V$) the set v^+ of immediate successors of v is countably infinite. If $v \in V \setminus \max V$, then the set v^+ may be endowed with an order of the type ω , and then by $(v_n)_{n \in \omega}$ we denote the sequence of elements of v^+ . The **rank** of $v \in V$ (r(v)) is defined inductively: r(v) = 0 if $v \in \max V$, and otherwise $r(v) = \sup \{r(v_n) + 1 : n < \omega\}$. The rank r(V) of the cascade V is, by definition, the rank of \emptyset_V . If it

The **cascade** is a tree V, ordered by " \sqsubseteq ", without infinite branches and with a least element \emptyset_V . A cascade is **sequential** if for each non-maximal element of V ($v \in V \setminus \max V$) the set v^+ of immediate successors of v is countably infinite. If $v \in V \setminus \max V$, then the set v^+ may be endowed with an order of the type ω , and then by $(v_n)_{n \in \omega}$ we denote the sequence of elements of v^+ . The **rank** of $v \in V$ (r(v)) is defined inductively: r(v) = 0 if $v \in \max V$, and otherwise $r(v) = \sup \{r(v_n) + 1 : n < \omega\}$. The rank r(V) of the cascade V is, by definition, the rank of \emptyset_V . If it is possible to order all sets v^+ (for $v \in V \setminus \max V$) so that for each $v \in V \setminus \max V$ the sequence $(r(v_n)_{n \le \omega})$ is non-decreasing, then the cascade V is **monotone**, and we fix such an order on Vwithout indication.

We introduce **lexicographic order** $<_{lex}$ on V in the following way: $v' <_{lex} v''$ if $v' \sqsupset v''$ or if there exist $v, \tilde{v'} \sqsubseteq v'$ and $\tilde{v''} \sqsubseteq v''$ such that $\tilde{v'} \in v^+$ and $\tilde{v''} \in v^+$ and $\tilde{v'} = v_n$, $\tilde{v''} = v_m$ and n < m. Also we label elements of a cascade V by sequences of naturals of length r(V) or less, by the function which preserves the lexicographic order, v_l is a resulting name for an element of V, where l is the mentioned sequence (i.e. $v_l \frown_n = (v_l)_n \in v^+$); denote also $V_l = \{v \in V : v \sqsupseteq v_l\}$ and by $L_{\alpha,V}$ we understand $\{l \in \omega^{<\omega} : r_V(v_l) = \alpha\}$. We introduce **lexicographic order** $<_{lex}$ on V in the following way: $v' <_{lex} v''$ if $v' \sqsupset v''$ or if there exist $v, \tilde{v'} \sqsubseteq v'$ and $\tilde{v''} \sqsubseteq v''$ such that $\tilde{v'} \in v^+$ and $\tilde{v''} \in v^+$ and $\tilde{v'} = v_n$, $\tilde{v''} = v_m$ and n < m. Also we label elements of a cascade V by sequences of naturals of length r(V) or less, by the function which preserves the lexicographic order, v_l is a resulting name for an element of V, where l is the mentioned sequence (i.e. $v_{l \frown n} = (v_l)_n \in v^+$); denote also $V_l = \{v \in V : v \sqsupseteq v_l\}$ and by $L_{\alpha,V}$ we understand $\{l \in \omega^{<\omega} : r_V(v_l) = \alpha\}$. We introduce **lexicographic order** $<_{lex}$ on V in the following way: $v' <_{lex} v''$ if $v' \sqsupset v''$ or if there exist $v, \tilde{v'} \sqsubseteq v'$ and $\tilde{v''} \sqsubseteq v''$ such that $\tilde{v'} \in v^+$ and $\tilde{v''} \in v^+$ and $\tilde{v'} = v_n$, $\tilde{v''} = v_m$ and n < m. Also we label elements of a cascade V by sequences of naturals of length r(V) or less, by the function which preserves the lexicographic order, v_l is a resulting name for an element of V, where l is the mentioned sequence (i.e. $v_{l \frown n} = (v_l)_n \in v^+$); denote also $V_l = \{v \in V : v \sqsupseteq v_l\}$ and by $L_{\alpha,V}$ we understand $\{l \in \omega^{<\omega} : r_V(v_l) = \alpha\}$. We introduce **lexicographic order** $<_{lex}$ on V in the following way: $v' <_{lex} v''$ if $v' \sqsupset v''$ or if there exist $v, \tilde{v'} \sqsubseteq v'$ and $\tilde{v''} \sqsubseteq v''$ such that $\tilde{v'} \in v^+$ and $\tilde{v''} \in v^+$ and $\tilde{v'} = v_n$, $\tilde{v''} = v_m$ and n < m. Also we label elements of a cascade V by sequences of naturals of length r(V) or less, by the function which preserves the lexicographic order, v_l is a resulting name for an element of V, where l is the mentioned sequence (i.e. $v_{l \frown n} = (v_l)_n \in v^+$); denote also $V_l = \{v \in V : v \sqsupseteq v_l\}$ and by $L_{\alpha,V}$ we understand $\{l \in \omega^{<\omega} : r_V(v_l) = \alpha\}$. Let W be a cascade, and let $\{V_w : w \in \max W\}$ be a set of pairwise disjoint cascades such that $V_w \cap W = \emptyset$ for all $w \in \max W$. Then, the **confluence** of cascades V_w with respect to the cascade W (we write $W \leftrightarrow V_w$) is defined as a cascade constructed by the identification of $w \in \max W$ with \emptyset_{V_w} and according to the following rules: $\emptyset_W = \emptyset_{W \leftrightarrow V_w}$; if $w \in W \setminus \max W$, then $w^{+W \leftrightarrow V_w} = w^{+W}$; if $w \in V_{w_0}$ (for a certain $w_0 \in \max W$), then $w^{+W \leftrightarrow V_w} = w^{+V_{w_0}}$; in each case we also assume that the order on the set of successors remains unchanged.

For the sequential cascade of rank 1, **contour** of V is Frechet filter on max V; $\int (V_0 \leftrightarrow V_n) = \int_{\int V_0} \int V_n$.

Let W be a cascade, and let $\{V_w : w \in \max W\}$ be a set of pairwise disjoint cascades such that $V_w \cap W = \emptyset$ for all $w \in \max W$. Then, the **confluence** of cascades V_w with respect to the cascade W (we write $W \leftrightarrow V_w$) is defined as a cascade constructed by the identification of $w \in \max W$ with \emptyset_{V_w} and according to the following rules: $\emptyset_W = \emptyset_{W \leftrightarrow PV_w}$; if $w \in W \setminus \max W$, then $w^{+W \leftrightarrow PV_w} = w^{+W}$; if $w \in V_{w_0}$ (for a certain $w_0 \in \max W$), then $w^{+W \leftrightarrow PV_w} = w^{+V_{w_0}}$; in each case we also assume that the order on the set of successors remains unchanged.

For the sequential cascade of rank 1, **contour** of V is Frechet filter on max V; $\int (V_0 \leftrightarrow V_n) = \int_{\int V_0} \int V_n$.

For a monotone sequential cascade V by f_V we denote an **lexicographic order respecting function** max $V \rightarrow \omega_1$.

Let V and W be monotone sequential cascades such that max $V \supset \max W$. We say that W **increases the order of** V (we write) $W \Rightarrow V$ if $\operatorname{ot}(f_W(U)) \ge \operatorname{indec}(\operatorname{ot}(f_V(U)))$ for each $U \subset \max W$, where $\operatorname{indec}(\alpha)$ is the biggest indecomposable ordinal less then, or equal to α ; For a monotone sequential cascade V by f_V we denote an **lexicographic order respecting function** max $V \rightarrow \omega_1$. Let V and W be monotone sequential cascades such that max $V \supset \max W$. We say that W **increases the order of** V (we write) $W \Rrightarrow V$ if $\operatorname{ot}(f_W(U)) \ge \operatorname{indec}(\operatorname{ot}(f_V(U)))$ for each $U \subset \max W$, where $\operatorname{indec}(\alpha)$ is the biggest indecomposable ordinal less then, or equal to α ; Let u be an ultrafilter and let V, W be monotone sequential cascades such that $\int V \subset u$ and $\int W \subset u$. Then we say that **rank** α **in cascade** V **agree with rank** β **in cascade** W **with respect to the ultrafilter** u if for any choice of $\tilde{V}_{p,s} \in \int V_p$ and $\tilde{W}_{p,s} \in \int W_s$ there is: $\bigcup_{(p,s)\in L_{\alpha,V}\times L_{\beta,W}} (\tilde{V}_{p,s}\cap \tilde{W}_{p,s}) \in u$; this relation is denoted by $\alpha_V E_u \beta_W$.

Theorem

Let u be an ultrafilter and let V, W be monotone sequential cascades such that $\int V \subset u$ and $\int W \subset u$, then $1_V E_u 1_W$.

Theorem

Let u be an ultrafilter and let V, W be monotone sequential cascades of finite ranks such that $\int V \subset u$ and $\int W \subset u$. Then $n_V E_u m_W$ implies the existence of a monotone sequential cascade T of rank max $\{r(V), r(W)\} \leq r(T) \leq r(V) + r(W)$ and such that $\int T \subset u$ and $T \Rightarrow V$ and $T \Rightarrow W$.

Theorem

Let u be an ultrafilter and let V, W be monotone sequential cascades such that $\int V \subset u$ and $\int W \subset u$, then $1_V E_u 1_W$.

Theorem

Let u be an ultrafilter and let V, W be monotone sequential cascades of finite ranks such that $\int V \subset u$ and $\int W \subset u$. Then $n_V E_u m_W$ implies the existence of a monotone sequential cascade T of rank $\max \{r(V), r(W)\} \leq r(T) \leq r(V) + r(W)$ and such that $\int T \subset u$ and $T \Rightarrow V$ and $T \Rightarrow W$.

J. E. Baumgartner, Ultrafilters on ω , J. Symb. Log. 60, 2 (1995) 624-639.

S. Dolecki, F. Mynard, Cascades and multifilters, Topology Appl., 104 (2002), 53-65.

C. Laflamme, A few special ordinal ultrafilters, J. Symb. Log. 61, 3 (1996), 920-927.

A. Starosolski, P-hierarchy on $\beta\omega$, J. Symb. Log. 73, 4 (2008), 1202-1214.

A. Starosolski, Ordinal ultrafilters versus P-hierarchy, to appear

A. Starosolski, Cascades, order and ultrafilters, to appear

• • = • • = •